

SEE 3-D

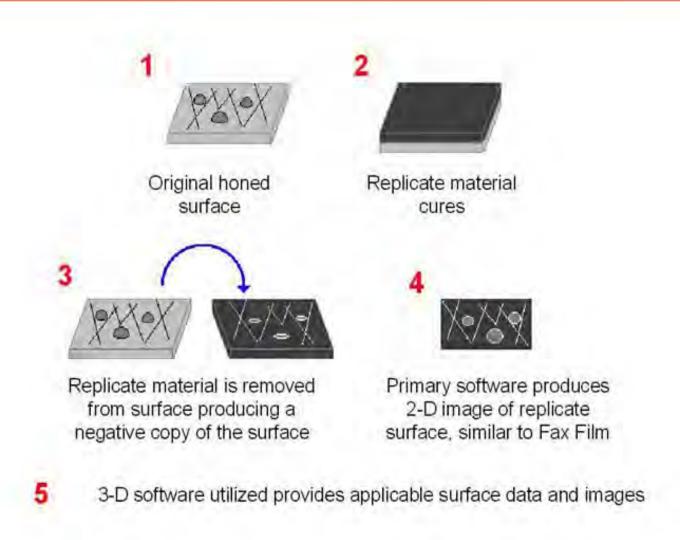
Surface Evaluation Equipment

C-K Engineering, Inc.

SEE 3-D System Overview

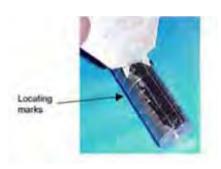
- Creates a permanent replicate of the cylinder bore surface
- Uses interferometer to take 3-D image and acquire data from replicate
- Automatically generates a detailed surface finish report including quantification of:
 - 3-D Finish
 - 2-D Finish
 - Cross Hatch Angle
 - Torn and Folded Material

SEE 3-D System Components



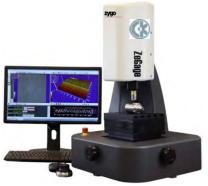
CKE PROPRIETARY INFORMATION PRIVILEGED AND CONFIDENTAL

Replication Process



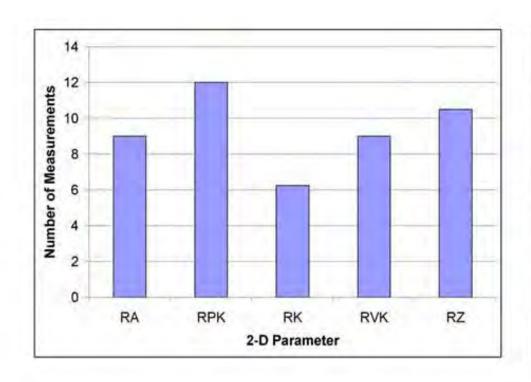
Steps to Make Replicates and Acquire Data

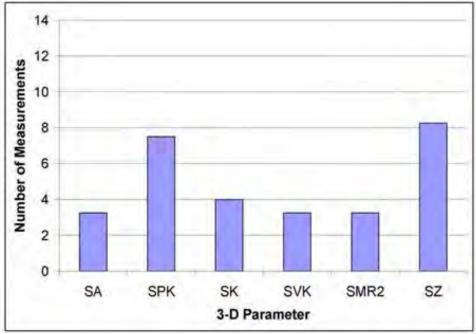
- Clean specimen surface with lint free cloth and surface cleaning solution
- Insert rod into fixture and apply replicating material into rod by slightly overfilling the slot



 Use scraper to remove excess material from rod

Insert fixture into cylinder


- 5. Energize air cylinder with 60 psi opening the valve (flip up) on top of the fixture
- 6. Let unit set with air pressure for 8 minutes
- 7. Turn off air valve, separate rod from liner and remove fixture from bore
- 8. Remove rod from fixture and place under interferometer



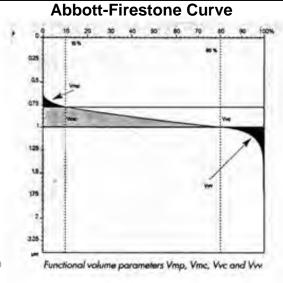
- Make sure image on screen is flat as possible by using tilting knobs in front of holding stage
- 10. Scan and save image
- Open SPIP software and bring up saved image
- 12. Invert image and run plan correction on image
- Use roughness analysis tool to generate Surface parameters in 3-D or 2-D data (using line profile)

Why Consider 3-D Parameters . . .

- Improve finish measurement precision an original objective
- Fewer measurements required
- Actual result Multiple readings are automatically generated during analysis of replicate

3-D Finish Parameter Advantages

- Fewer readings required
- Examines surface area not a line
- Improves surface finish definition
- Significantly less number of measurements needed to keep parameter value within +/-10% of 95% confidence interval
- Excludes effect of porosity in porous surfaces
 I.E. plasma coatings


3-D Functional Parameters

ISO Standard

Additional CKE Parameters

CKE Proposed 3-D parameters	Optimal Parameter Range	SAE 2001-3550
		Stevens Hill
		2-D Parameters
S _{10z} ; Mean Peak to Valley Height	(Optimal range: 8-24 µm)	R _z ISO 2.5-4.0µm
S _{vk} : Reduced Valley Depth.	(Optimal range: 0.5-1.2 µm)	R _{vk} 0.7-1.0 μm
S _k : Core Roughness Depth	(Optimal range: 0.4-0.8 µm)	R _k 0.6-1.0 µm
S _{pk} : Reduced Peak Height	(Optimal range: 0.4-1.5 µm)	R _{pk} 0.1-0.4 μm
S _{bi} : Surface Bearing Index	(Optimal range: 0.8-1.5)	
S _{ci} : Core Fluid Retention Index.	(Optimal range: 0.3-1.0)	
TFM: Torn and Folded Material	(Optimal range ≥6)	12 max (1-15
	(1-10 scale)	scale)
X-Hatch: Hone Cross-Hatch Angle	(Optimal range: 25-35	25-35 degrees
	Degrees)	
Porosity: Total Porosity Area as a	(Optimal range: 0.0-1.5 %)	
Percentage of Scan Area (Sume)		

- Functional finish values are required in the development of effective models and an understanding of finish on oil consumption and wear
- Functional parameters are calculated from the Abbott-Firestone curve obtained by the integration of the height distribution on the whole surface

3-D Bore Surface Finish Data Provides . . .

Surface porosity

- Percent area of surface porosity at location beneath mean core finish
- Distribution of porosity size

Particles in surface

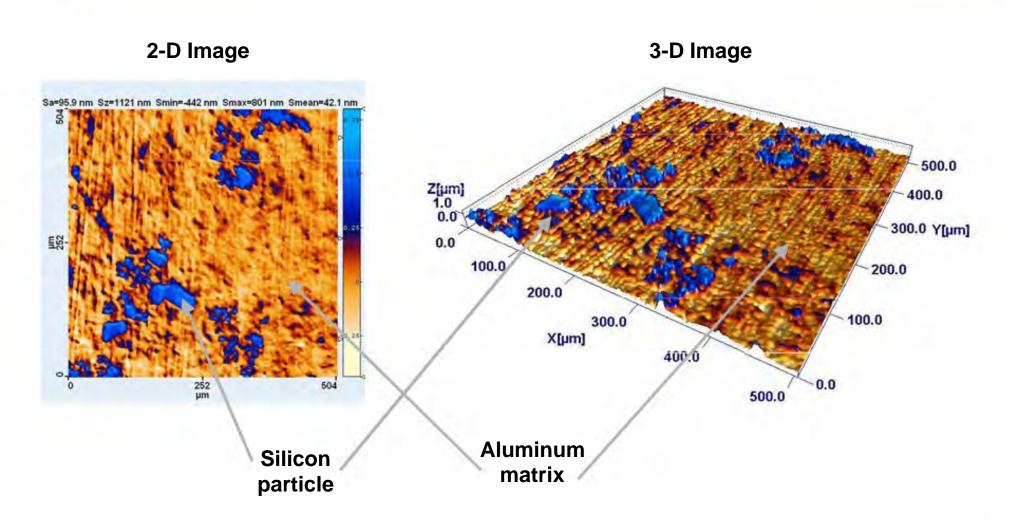
- Percent area occupied by aluminum particles (in hypereutectic aluminum surfaces) or silicon carbide or other hard particles (in Nikasil®-type coatings)
- Particle size distribution height of particle surface above mean of kernel roughness

Wear

- At top ring turn-around through 10μ 100 μ (depending on objective)
- At specific location between top and bottom turn-around Wear μm = (Sκ + Spκ) before test (Sκ + Spκ) after test

Available 3-D Finish Measurement Information Cast Iron & (Alternate Cylinder Bore Surfaces)

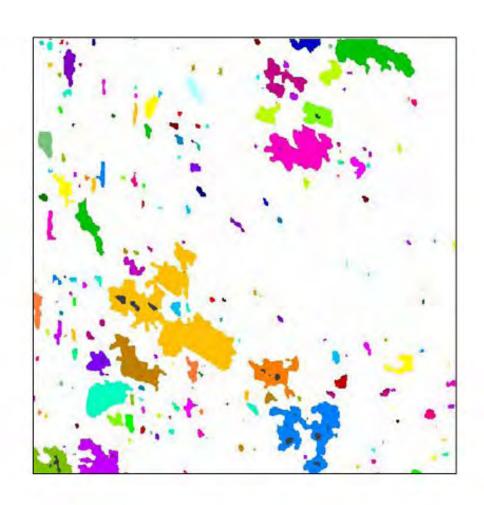
- 2-D surface image (similar to faxfilm) torn/folded material, crosshatch angle (automatic quantitative evaluation)
- 3-D surface image
- 2-D/3-D height parameters SA/RA, Sz/Rz, Sp/Rpk, Sv/Rvk, Sκ/Rk finish and hard particle height vs. core material
- Functional wear parameters SMR bearing surface area, SMC height of surface bearing area
- Functional lubrication/oil consumption parameters Vv void volume of scale limited surface at height, Vvc core void volume of surface
- Additional data oil consumption, surface porosity, % area occupied by and size distribution of hard particles in case of alternate cylinder bore materials

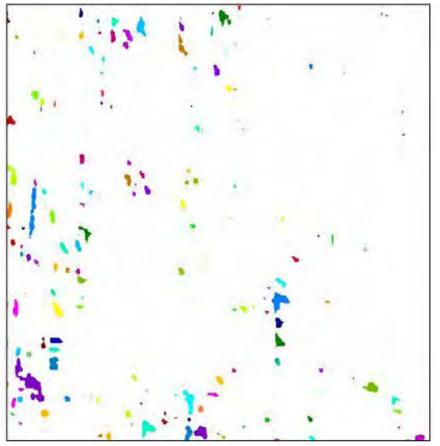

Typical Hypereutectic Aluminum Cylinder Bore Finish Data

From Top	3-D Parameters from Replicate Scan (μm)											
(mm)	SA	Sz	Spk	Sĸ	S vĸ	SMIN	SMAX	S₁ ht	% Si	% Pores	S bi	Sci
45	0.082	1.056	0.212	0.222	0.098	-0.508	0.628	1.136	29.7	0.83	0.479	1.820
60	0.083	1.208	0.253	0.215	0.072	-0.436	0.952	1.388	18.4	0.85	0.509	1.760
75	0.103	1.110	0.315	0.269	0.080	-0.367	0.820	1.187	30.8	2.72	0.419	2.040
90	0.113	1.646	0.322	0.307	0.117	-0.909	1.095	2.004	23.8	0.11	0.484	1.820
Avg	0.095	1.255	0.276	0.253	0.092	-0.555	0.874	1.429	25.67	1.128	0.473	1.86
Min	0.082	1.056	0.212	0.215	0.072	-0.909	0.628	1.136	18.4	0.11	0.419	1.760
Max	0.113	1.646	0.322	0.307	0.117	-0.367	1.095	2.004	30.8	2.72	0.509	2.040

D Darameters from Poplicate Scan

Typical Hypereutectic Cylinder Bore Surface

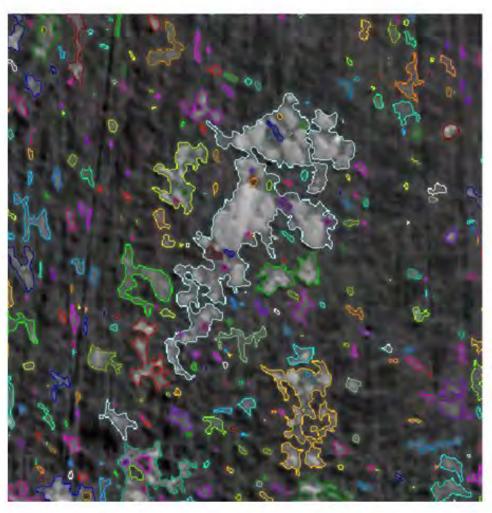


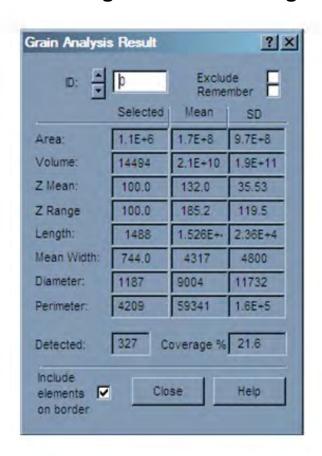


Percent Silicon Particle and Casting Porosity Distribution – 390 Aluminum

Particle Area at Surface

Porosity Area at Surface

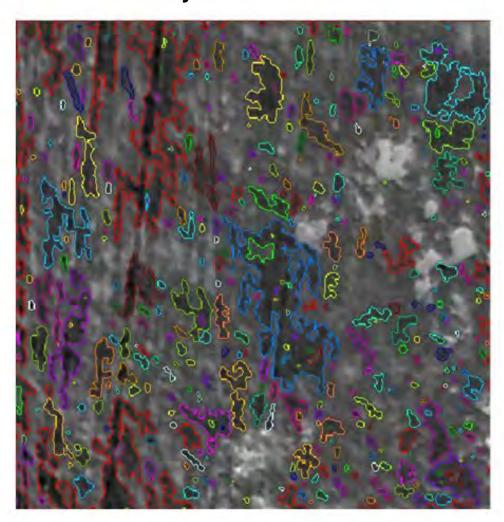




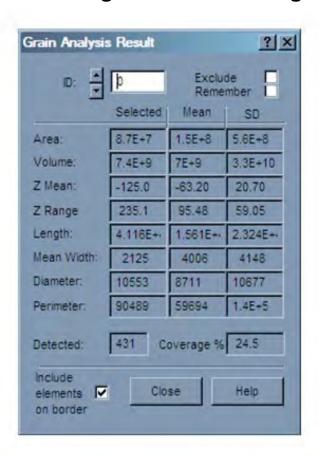
Percent Silicon Particle Distribution

Particle Area at Surface

Percentage Area of Coverage

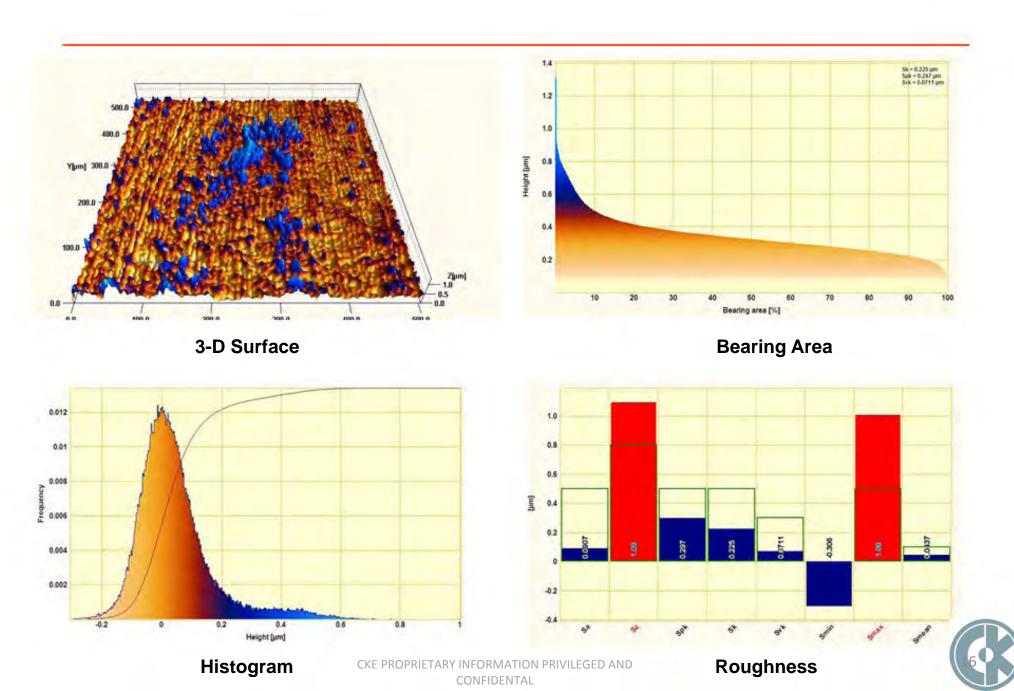


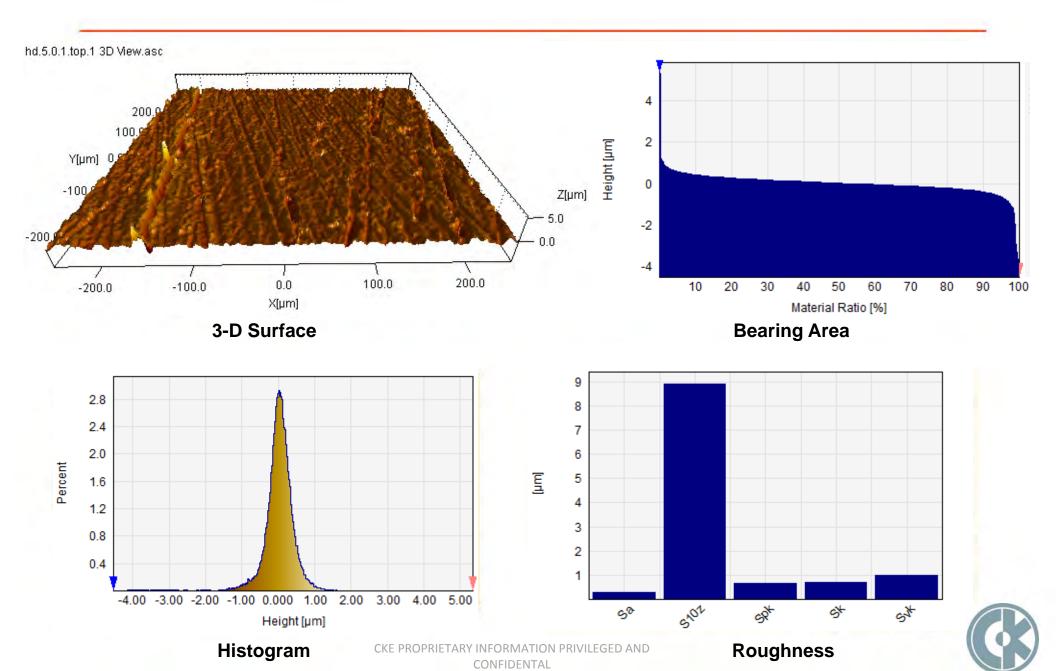
Silicon above 10% plane

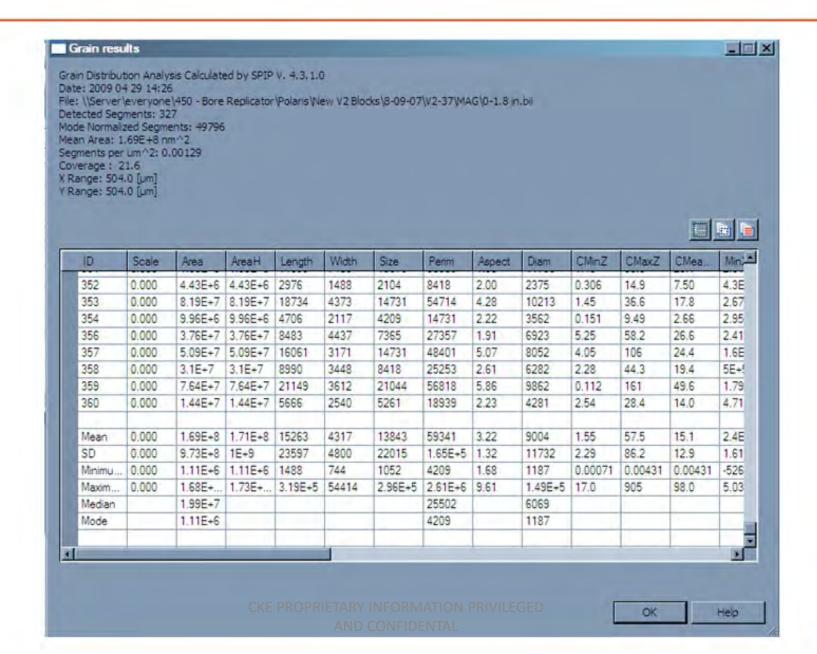


Percent Casting Porosity Distribution 390 Aluminum

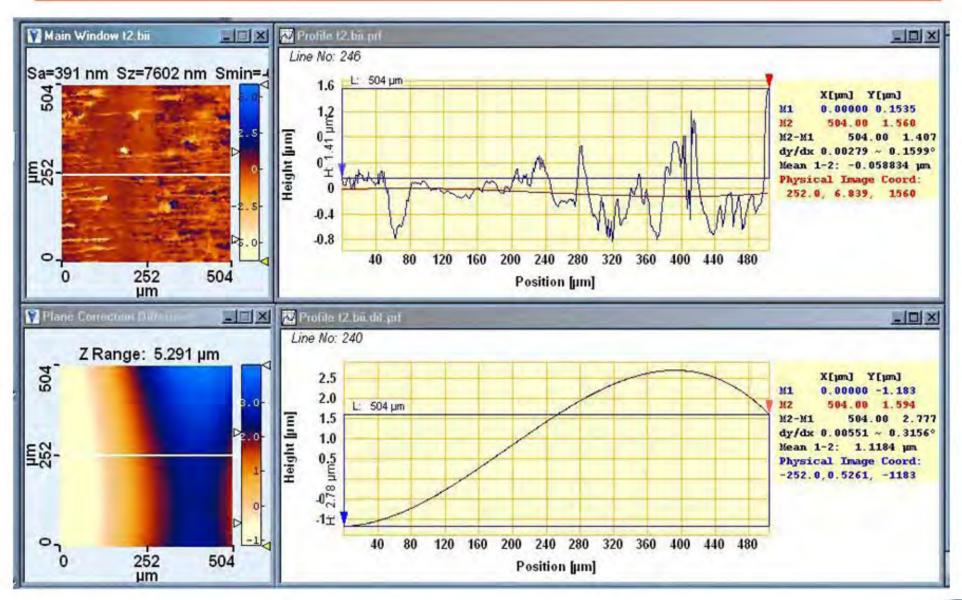
Porosity Area below Surface


Percentage Area of Coverage

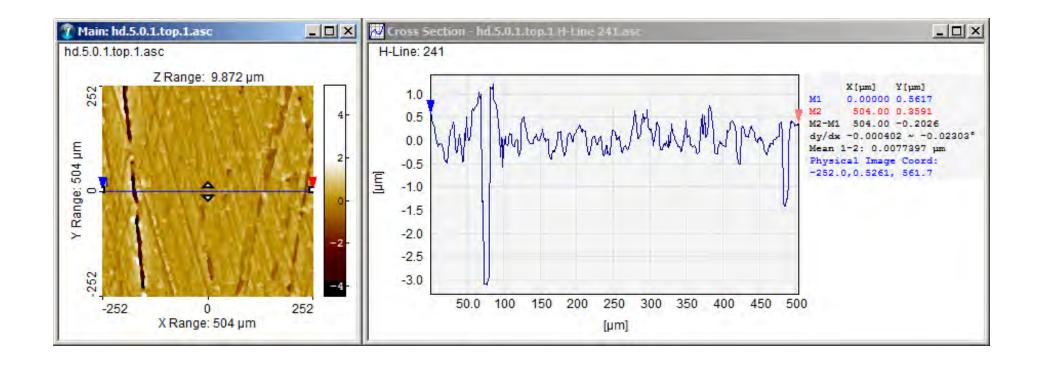

Porosity below 10% plane


Graphical Representation of Finish 390 Aluminum

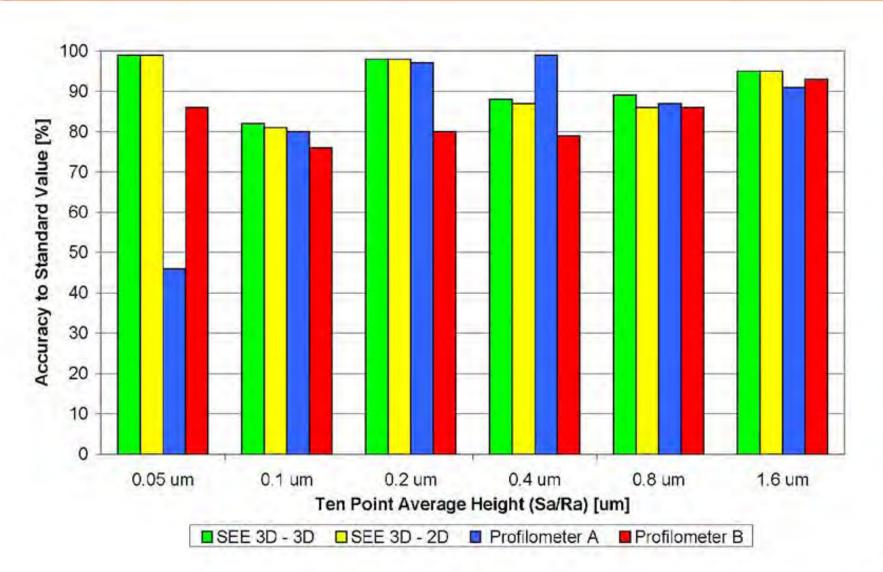
Graphical Representation of Finish Cast Iron



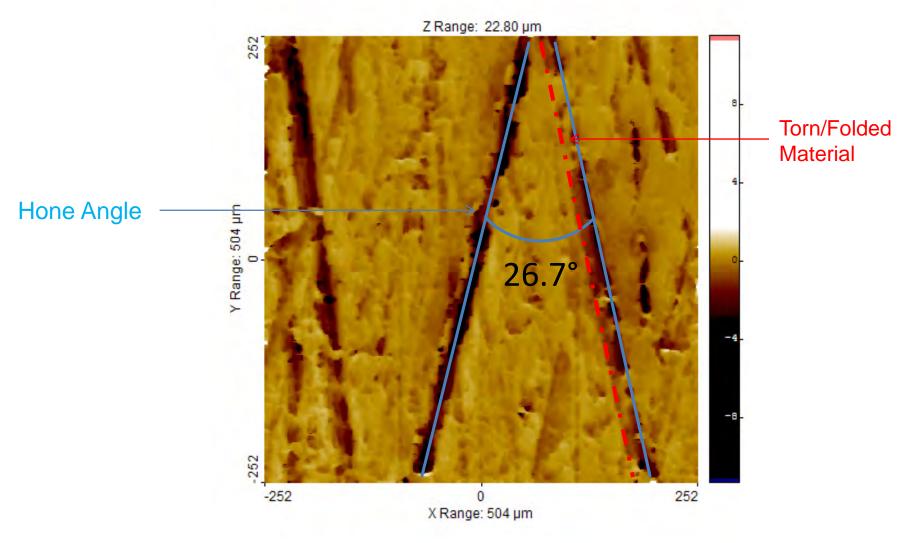
Silicon (Hard) Particle Analysis Data



Line and Form Profiles for 2-D Parameters



Line and Form Profiles for 2-D Parameters Cast Iron

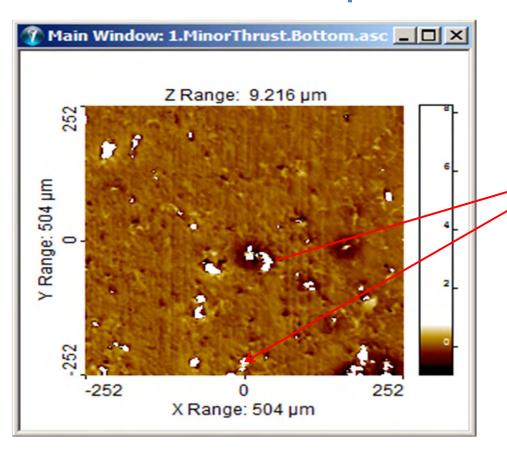


Accuracy of Various Surface Finish Measuring Equipment

Provides Hone Angle and Torn/Folded Material Quantification

Provides Quantification of Over 30 Surface Characteristics

Replicate Scan															
	Axial Location Radial Location µm									n/a	%	μι	n²	1-10	
	Axiai Location	Itadiai Location	R,	R _a	R _{vk}	R _k	S,	S _{vk}	S _k	S _{pk}	S _{ci}	S _{dr}	S _{2A}	S _{3A}	TFM
		0°	3.62	0.43	1.05	0.89	18.91	1.13	0.82	1.17	0.966	1.70	2.54E+05	2.58E+05	5
		Minor Thrust	2.69	0.40	0.98	0.79	22.48	1.04	0.84	0.79	1.000	1.42	2.54E+05	2.58E+05	6
	Тор	180°	2.56	0.27	0.69	0.66	12.10	0.84	0.63	0.75	0.967	0.82	2.54E+05	2.56E+05	5
	ТОР	Thrust	2.24	0.32	0.74	0.74	15.71	0.92	0.75	0.90	0.980	1.09	2.54E+05	2.57E+05	5
		Average	2.78	0.36	0.87	0.77	17.30	0.98	0.76	0.90	0.978	1.26	2.54E+05	2.57E+05	5.3
		Std. Dev.	0.59	0.07	0.18	0.10	4.44	0.13	0.10	0.19	0.016	0.38	0.00E+00	9.72E+02	0.5
	Mid	0°	7.96	0.78	1.99	1.58	19.80	1.34	1.19	1.12	0.984	2.56	2.54E+05	2.61E+05	5
Cylinder 1		Minor Thrust	2.11	0.26	0.50	0.64	25.53	0.86	0.59	1.46	0.804	1.46	2.54E+05	2.58E+05	6
J		180°	5.04	0.64	1.99	0.85	31.27	2.16	1.09	3.08	0.606	3.80	2.54E+05	2.64E+05	6
		Thrust	2.17	0.30	0.67	0.58	19.42	0.92	0.97	1.32	0.978	1.78	2.54E+05	2.59E+05	5
		Average	4.32	0.50	1.29	0.91	24.01	1.32	0.96	1.74	0.843	2.40	2.54E+05	2.60E+05	5.5
		Std. Dev.	2.79	0.26	0.82	0.46	5.59	0.60	0.26	0.90	0.179	1.04	0.00E+00	2.64E+03	0.6
		0°	4.93	0.46	0.97	0.95	30.12	1.40	1.08	1.51	0.704	3.58	2.54E+05	2.63E+05	5
		Minor Thrust	3.57	0.44	1.00	1.07	29.25	1.36	1.16	2.15	0.907	3.16	2.54E+05	2.62E+05	5
	Bottom	180°	4.61	0.58	1.28	1.13	21.40	1.37	1.10	1.21	0.912	2.20	2.54E+05	2.60E+05	5
	20110111	Thrust	4.89	0.42	0.95	0.90	27.48	1.71	0.98	1.35	0.820	3.63	2.54E+05	2.63E+05	5
		Average	4.50	0.48	1.05	1.01	27.06	1.46	1.08	1.55	0.836	3.14	2.54E+05	2.62E+05	5.0
		Std. Dev.	0.63	0.07	0.16	0.11	3.93	0.17	0.07	0.41	0.097	0.66	0.00E+00	1.68E+03	0.0



Provides Optimal Surface Characteristic Specifications

Replicate Scan Cylinder 1										
Axial L	ocation	Тор	Mid	Bottom	Purposed Sp	pecifications				
	S,		24.01	27.06	8.0	24.0				
	S _{vk}	0.98	1.32	1.46	0.5	1.2				
μm	S _k	0.76	0.96	1.08	0.4	0.8				
	S _{pk}	0.90	1.74	1.55	0.4	1.5				
NI/A	S _{bi}	0.92	1.10	1.08	0.8	1.5				
N/A	S _{ci}	0.98	0.84	0.84	0.3	1.0				
1-10	TFM	5.3	5.5	5.0	1.0	6.0				
Degrees	X-Hatch	25.0	30.6	26.2	25.0	35.0				

Areas of Porosity excluded when SEE 3-D Values are Developed

White represents areas of porosity that are excluded when SEE 3-D finish values are developed.

The resultant data excludes the effect of porosity on reported finish

Coated Liner Average Finish without the Effect of Porosity

Sample 1 Sample 2

Build 34 (Sume) Cylinder Porosity Removed										
Unit	Parameter	Тор	Bottom	Purposed Specifications						
μm	S _{10z}	2.34	2.08	8.0	24.0					
	S _{vk}	0.39	0.38	0.5	1.2					
	S _k	0.58	0.35	0.4	0.8					
	S_{pk}	1.25	0.94	0.4	1.5					
N/A	S _{bi}	0.23	0.17	0.8	1.5					
	S _{ci}	1.16	1.08	0.3	1.0					

Coated Liner Average Finish with the Effect of Porosity

Build 34 (Sume) Cylinder with Porosity									
Unit	Parameter	Тор	Bottom	Purposed Specification					
	S _{10z}	11.45	6.97	8.0	24.0				
μm	Svk	1.45	0.69	0.5	1.2				
	S _k	0.68	0.35	0.4	0.8				
	S _{pk}	1.68	0.84	0.4	1.5				
N/A	S _{bi}	0.05	0.05	0.8	1.5				
IN/A	Sci	0.56	0.71	0.3	1.0				
% SA	Porosity	4.56	2.12	0.0	1.5				

SEE 3-D Two Dimensional Data As Compared to Profilometer Data

Validation with:

- Gehring
- Sunnen
- Polaris
- Briggs & Stratton
- Caterpillar

